

HHS Pre-Calculus Reference Book

Purpose: To create a reference book to review topics for your final exam and to prepare you for Calculus.
Instructions: Students are to compose a reference book containing information and examples of the graphs of common functions and concepts. The topics are listed below. Your book should contain detailed information and examples. Use color neatly for illustration purposes, if you desire. If you are unsure about the depth of any topic, please see your teacher for clarification.

General Layout: 2 point deduction for any structural errors.

- Your reference book should be presented in a 3 ring binder with page protectors to protect your work from spills and tears
- Include a title page at the front of the book
- Include a table of contents with topics and page numbers. (only needed on the Final check)
- All work is to be done on lineless paper using colored or black ink (NO PENCIL). Computer graphics CAN NOT BE USED.
- All work (except for headings) should be handwritten
- Every topic should include at least 1 worked-out example

Checkpoints:

- Thursday, February 27 - Chapters 1 and 2
- Tuesday, March 24 - Chapters 3 and 4
- Friday, May 29 - Entire Reference Book Due (Including Chapters 5, 6, 7, and 8)

Late Fees:

- Planned absences on due dates will require an early submission of the reference book.
- 10 points will be deducted per day if the reference book is turned in after the due dates.

Topics to be included in your reference book: (147 points total)

Chapter 1: Functions and Graphs (33 points)

A. 13 Basic Functions (include Domain, Range, Continuity, Symmetry, Increasing/Decreasing Intervals, Boundedness, Extrema, Asymptotes, End Behavior (Limits), and a graph for EACH function).
i. Linear
vi. Absolute Value
x. Sine
ii. Quadratic
vii. Reciprocal
xi. Cosine
iii. Cubic
viii. Exponential
xii. Greatest Integer
iv. Square Root
ix. Logarithmic
xiii. Logistic
v. Cube Root
B. Graphical Transformations (Explain and graph the transformations)
i. Translations Up and Down: $f(x)=f(x)+c$ and $f(x)=f(x)-c$
ii. Translations Left and Right: $f(x)=f(x+c)$ and $f(x)=f(x-c)$
iii. Vertical Stretch and Shrink: $f(x)=c \cdot f(x)$ where $c>1$ and $0<c<1$
iv. Horizontal Stretch and Shrink: $f(x)=f\left(\frac{x}{c}\right)$ where $c>1$ and $0<c<1$
v. Reflections: $f(x)=-f(x)$ and $f(x)=f(-x)$
C. Function Composition and Inverses: Create 2 functions, $f(x)$ and $g(x)$, then find the compositions and inverses below.
i. $f(g(x))$
ii. $g(f(x))$
iii. $f^{-1}(x)$
iv. $g^{-1}(x)$

Chapter 2: Polynomial, Power, and Rational Functions (15 points)

A. Quadratic Functions
i. Standard Form
ii. Vertex Form
iii. Converting from Standard Form to Vertex Form using Completing the Square
B. Power Functions i. Given an equation find the degree and constant of variation ii. Direct Variation iii. Indirect Variation
C. Polynomial Functions i. Multiplicity relative to an equation and a graph ii. Given the zeros, find the function iii. Given the function, find the zeros
D. Long Division and Synthetic Division
i. Example of Long Division
ii. Example of Synthetic Division
iii. When to use one vs the other

Chapter 3. Exponential, Logistic, and Logarithmic Functions (11 points)

A. Solving Exponential and Logarithmic Equations
i. Example of Solving an Exponential Equation
ii. Example of Solving a Logarithmic Equation
B. Modeling with Exponential and Logistic Equations (word problems)
i. Exponential Word Problem
ii. Logistic Word Problem
C. Properties of Logs
i. Write out the 3 properties
ii. Example of Expanding
iii. Example of Condensing

Chapter 4. Trigonometric Functions and Graphs (26 points)

A. DMS	i. DMS to Degrees ii. Degrees to DMS
B. Radians	i. Radians to Degrees ii. Degrees to Radians
C. Unit Circle	D. Graphs of Trigonometric Functions i. Graph of Sine ii. Graph of Cosine iii. Graph of Tangent
E. Graphs of Reciprocal Trigonometric Functions	
i. Graph of Cosecant	
ii. Graph of Secant	
iii. Graph of Cotangent	

Chapter 5. Analytic Trigonometry (14 points)

A. Identities	v. Reciprocal Identities ii. Quotient Identities iii. Pythagorean Identities iv. Co-Function Identities
vi. Double Angle Identities vii. Half Angle Identities viii. Power-Reducing Identities	
B. Simplifying Trig Functions	
C. Solving Trig Equations	
D. Proving Trig Identities	
E. Law of Sines	
i. One regular example	
ii. One example of the ambiguous case	
F. Law of Cosines	
G. Area of a Triangle	
i. SAS Example	
ii. SSS Example (Heron's Formula)	

Chapter 6. Applications of Trigonometry (18 points)

A. Vectors	iv. Fomponent Form
	iving the Direction Angle of a Vector ii. Standard Form (using i and j) iii. Finding the Magnitude of a Vector
v. Dot Product	
vi. Finding the Angle Between 2 Vectors	

Chapter 7: Conics (20 points)

A. Parabola	i. Standard Equations
	ii. Example of finding the Vertex iii. Example of finding the Directrix iv. Example of finding the focal length and focal width v. Example of finding which way the parabola opens
B. Ellipse	i. Standard Equations ii. Example of finding the Center iii. Example of finding the Vertices iv. Example of finding the Foci v. Example of Determining if the Ellipse is Wide or Tall
C. Hyperbola	
i. Standard Equations	
ii. Example of finding the Center	
iii. Example of finding the Vertices	
iv. Example of finding the Foci	
v. Example of finding the Asymptotes	
v. Example of Determining if the Hyperbola opens Left/Right or Up/Down	

Chapter 8. Limits, Sequences, and Series (10 points)

A. Limits
i. Finding Limits Graphically
ii. One-Sided Limits
iii. Finding Limits Algebraically
iv. Finding Limits Numerically
B. Sequences
i. Recursive and Explicit Formulas for Arithmetic Sequences
ii. Recursive and Explicit Formulas for Geometric Sequences
C. Series
i. Sigma Notation
ii. Sum of a Finite Series
iii. Sum of an Infinite Series (Converging vs Diverging)

