Honors Pre-Calculus Homework Packet: UNIT 2 Polynomial, Power, and Rational Functions

2.1 and 2.2

Determine if the function is a polynomial. If it is, state the degree and leading coefficient.

1.
$$f(x) = 9 - 2x$$

2.
$$f(x) = 3x^{-5} + 17$$

3.
$$f(x) = 2x^5 - \frac{1}{2}x + 9$$

Convert each quadratic function to vertex form to find the transformations. Then write the vertex and the axis of symmetry.

4.
$$f(x) = x^2 - 6x + 12$$

5.
$$f(x) = 8 + 2x - x^2$$

4.
$$f(x) = x^2 - 6x + 12$$
 5. $f(x) = 8 + 2x - x^2$ 6. $f(x) = 5x^2 - 25x + 1$

Write the statement as a power function. Use k for the constant of variation when it is not given.

- 7. The current I in an electrical circuit is inversely proportional to the resistance R, and constant of variation V.
- 8. The energy E produced in a nuclear reaction is directly proportional to the mass m, with the constant of variation being c^2 , the square of the speed of light.
- 9. The speed, p of a free-falling object that has been dropped from rest varies directly as the square root of the distance traveled d, with a constant of variation $k = \sqrt{2g}$

2.3

State the degree of each polynomial, then write out all of the zeroes and their multiplicities.

1.
$$f(x) = (x-1)(x+2)(x+3)$$

2.
$$f(x) = -x^3(x+10)^2(2x-3)^4$$

3.
$$f(x) = (2x+1)^3(x-1)$$

4.
$$f(x) = -6(x+5)^3(x-4)^2(5x+3)$$

Graph each polynomial function.

5.
$$f(x) = -(x+4)^2(x-1)(x-5)^3$$
 6. $f(x) = x(x+3)^5(x-2)^3$

6.
$$f(x) = x(x+3)^5(x-2)^3$$

7.
$$f(x) = -(x-3)^4(x+2)(x+6)^2$$

7.
$$f(x) = -(x-3)^4(x+2)(x+6)^2$$
 8. $f(x) = (x+3)^2(x-2)^2(x+6)^2(x-8)^2$

Write the polynomial function with the given zeroes in factored form and standard form.

10. Zeros: **4** *m*. **2**, **1**
$$\pm \sqrt{2}$$

Use long division to divide the polynomials. Write out the quotient and remainder.

1.
$$x^4 - 2x^3 + 3x^2 - 4x + 6 \div x^2 + 2x - 1$$

1.
$$x^4 - 2x^3 + 3x^2 - 4x + 6 \div x^2 + 2x - 1$$
 2. $x^6 + 2x^5 + 5x^3 + 4x^2 + 6 \div x^3 + 2$

Use synthetic division to divide the polynomials. Write out the quotient and remainder.

3.
$$2x^4 - 5x^3 + 7x^2 - 3x + 1 \div x - 3$$

3.
$$2x^4 - 5x^3 + 7x^2 - 3x + 1 \div x - 3$$
 4. $3x^5 - 5x^3 + 4x^2 - 15x - 3 \div x + 2$

Find the remainder after each polynomial is divided.

5.
$$x^3 - 3x + 4 \div x + 2$$

5.
$$x^3 - 3x + 4 \div x + 2$$
 6. $x^5 - 2x^4 + 3x^2 - 20x + 3 \div x + 1$

7.
$$x^3 - x^2 - x - 15 \div x - 3$$

Use the Rational Zeroes Theorem to write a list of all the potential rational zeros. Then determine which ones are actual zeroes.

8.
$$f(x) = 2x^3 - 5x^2 - x + 6$$

2.5 and 2.6

Write the polynomial in standard form.

1.
$$f(x) = (x+2)(x-\sqrt{3}i)(x+\sqrt{3}i)$$
 2. $f(x) = x(x+1)(x-1-i)(x-1+i)$

2.
$$f(x) = x(x+1)(x-1-i)(x-1+i)$$

Write the polynomial function with the given zeros in factored form and standard form.

3. Zeros:
$$1 - 2i$$
 and $1 + 2i$

4. Zeros:
$$-1$$
, 2, and $1 - i$

5. Zeros:
$$3 + 4i$$
, and $2 - 7i$

Given one zero of the polynomial, find the rest of the zeros of the polynomial.

6. 4i is a zero of
$$f(x) = x^4 + 13x^2 - 48$$

6. 4i is a zero of
$$f(x) = x^4 + 13x^2 - 48$$
 7. 2 is a zero of $f(x) = x^3 - 6x^2 + 13x - 10$

8.
$$1 + 3i$$
 is a zero of $f(x) = x^4 - 2x^3 + 5x^2 + 10x - 50$

2.9

Determine where the function is (a) < 0, (b) ≤ 0 , (c) > 0, and (d) ≥ 0

1.
$$f(x) = (x-7)(3x+1)(x+4)$$

1.
$$f(x) = (x-7)(3x+1)(x+4)$$
 2. $f(x) = (5x+3)(x+6)^2(x-1)$

Solve the inequality.

3.
$$(2x+1)(x-2)(3x-4) \le 0$$
 4. $(2x-7)\sqrt{x+4} > 0$ 5. $\frac{(x+3)}{|x-8|} \ge 0$

4.
$$(2x-7)\sqrt{x+4} > 0$$

$$5. \ \frac{(x+3)}{|x-8|} \ge 0$$

Determine where the function is (a) < 0, (b) ≤ 0 , (c) > 0, and (d) ≥ 0

6.
$$f(x) = \frac{(2x-7)(x+1)}{x+5}$$

7.
$$f(x) = \frac{\sqrt{x+5}}{(2x+1)(x-1)}$$

8.
$$f(x) = \frac{3x-1}{(x+3)\sqrt{x-5}}$$

9.
$$f(x) = \frac{(x-5)|x-2|}{\sqrt{2x-3}}$$

10.
$$f(x) = \frac{x^2(x-4)^3}{\sqrt{x+1}}$$